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A thermodynamic approach to the anchoring phenomenon in the

nematic liquid crystal-substrate system

by A. PONIEWIERSKI* and A. SAMBORSKI

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52,
01-224 Warsaw, Poland

(Received 10 March 1997; accepted 30 May 1997)

The phenomenon of anchoring in the nematic liquid crystal-amorphous substrate system is
considered and model independent definitions of the surface nematic director, the surface
tension and the anchoring energy coefficient are proposed. Then the Landau-de Gennes
model of the system is studied for a specific choice of the surface parameters, which leads to
a continuous homeotropic—conical anchoring transition. The free energy as a function of the
director at a distance / from the surface is found. It is shown that its form is different in two
regions of the temperature—distance plane separated by the line of a Fréedericksz transition.
The asymptotic behaviour of the free energy for large / and for infinitesimal deviations of the
director from the anchoring direction is studied. It is found that the asymptotic formula holds
also in the vicinity of the anchoring transition. Finally, the results of numerical studies of the
Landau-de Gennes model are compared with the predictions of a simple phenomenological

model.

1. Introduction

It is well known that nematic liquid crystals (NLCs)
can be oriented by various limiting surfaces, for instance
the surface of a solid substrate. This phenomenon is
called the anchoring of the NLC at interfaces [1-7].
Due to the interaction of the NLC with the substrate,
there exists a set of preferred orientations of the bulk
nematic director n, called the anchoring directions,
which correspond to the equilibrium states of the
system. In the case of an amorphous substrate the set
of anchoring directions is continuously degenerate. If 0
denotes the angle between i and the surface normal kK
then the homeotropic (H), planar (P), and conical (C)
anchorings correspond to 6=0, 6 =n/2, and 0< 6 <n/2,
respectively. The phenomenon of anchoring and phase
transitions between different types of anchoring attract
a good deal of attention, and they have been studied
both experimentally [ 8-13] and theoretically [ 14-23].

The anchoring of the NLC is usually characterized
by two quantities: the anchoring direction and the
anchoring strength. While the anchoring direction is a
well defined concept, there have been some problems
with the definition of the anchoring strength [3]. The
latter usually appears as a parameter in phenomeno-
logical expressions for the surface tension y between the
NLC and the substrate, and it is called the anchoring
energy coefficient [2]. An example of such a phenomeno-

* Author for correspondence.

logical approach is the Rapini-Papoular [ 24 ] formalism,
in which the form of the orientation dependent part of
y, referred to as the anchoring energy function, is
merely postulated. The problem can be formulated more
generally as follows: how can we define y as a function
of the director at the interface fi, and what is really
meant by i,? To consider y as a function of f, it is
necessary to deform the equilibrium configuration of the
director by means of an external field or by a strongly
anchoring wall placed a distance / from the substrate.
Then yis defined as the surface part of the grand-canonical
potential © per unit area. In the absence of bulk external
fields, the bulk contribution to Q consists of two parts:
0,, which is independent of any deformation, and the
Frank elastic energy of deformation. To define the surface
contribution to Q, Yokoyama [3] has introduced a
Gibbs dividing surface placed at some distance z4 from
the surface of the substrate. The NLC above the dividing
surface is considered as having a bulk-like behaviour.
Then y(z4, ) is defined with respect to that arbitrarily
chosen dividing surface. Hence, the anchoring energy
coefficient, which is defined as the second derivative of
y with respect to the director orientation taken at the
anchoring direction [2], is meaningful only in relation
to the dividing surface.

In this paper we reconsider the problem of the thermo-
dynamic definition of the anchoring strength. First, we
define © as a function of the ‘bulk’ director fi; at a
distance / from the substrate surface. This is the only

0267-8292/97 $12:00 © 1997 Taylor & Francis Ltd.
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physical surface in the problem and as long as it is
smooth, / is a well defined thermodynamic parameter.
Therefore, there is no reason to introduce an extra
dividing surface that separates the interfacial region of
the NLC from the bulk, as there is no good criterion
for locating such a surface. In general, 2 depends also
on / and its minimum at / fixed defines the equilibrium
orientation of the director at z=/, denoted f,;,. To
determine the bulk contribution to €, we define a
‘surface direction’ ny; it is usually different from the
actual director at z=0. It follows from our definition
of A, that if i;=1#;, then also i, =1, and the Frank
elastic energy vanishes. Then the surface tension is
defined as a function of / and fi; rather than f,. However,
close to f_; the relation between f; and A, can be
inverted and y can also be considered as a function of
fi,, which allows us to define the anchoring energy
coefficient. For a finite system, this coefficient formally
depends on /; however, we are mainly interested in
its limiting value when /— ». We show that in this
limit the anchoring energy coefficient is related to the
extrapolation length [1].

The rest of the paper is devoted to numerical studies
of the Landau—-de Gennes model. This model can be
considered as a semi-microscopic one to distinguish it
from the phenomenological models in which the director
field is the only variable. It also takes into account
variations of the order parameters. Recently we have
used a second order approximation of the Landau-—
de Gennes free-energy functional to study anchoring
transitions and the asymptotic behaviour of the free
energy for /— o and for infinitesimal deviations of fi,
from the anchoring direction [25,26]. In this paper we
concentrate on the dependence of the free energy on iy,
which is studied for various temperatures / and for
various /. For simplicity, we choose only one set of the
surface parameters that has already been studied by
Teixeira et al. [17] in the context of the homeotropic—
conical anchoring transition. We show that below the
anchoring transition the dependence of the free energy
on fi; is qualitatively different in two regions of the (z, /)
plane, and the border line is the line of a Fréedericksz
transition. We also study the asymptotic behaviour of
the free energy for large / and n; close to the anchoring
direction, and we find that the asymptotic formula holds
even very close to the continuous anchoring transition.
It is also found that the anchoring energy coefficient
vanishes at the continuous anchoring transition.

Our paper is arranged as follows. In §2 we provide
thermodynamic definitions of the surface director, the
surface tension, and the anchoring energy coefficient.
We also generalize the concept of the extrapolation
length. In §3 we define the model and study the
stability of the homeotropic alignment by means of

the bifurcation analysis. The results obtained from the
numerical solutions of the Euler—Lagrange equations
are presented in §4, and §35 is devoted to a discussion.

2. Thermodynamics of anchoring

We consider a NLC in contact with an isotropic solid
substrate. The nematic direction i, the density and the
order parameters depend only on :z, ie. the distance
from the surface of the substrate located at z=0. We
consider an idealized situation where it is possible to
control the orientation of the director at z=1/ by some
external factor without changing the structure of the
fluid. In other words, if / is large compared with the
thickness of the interfacial region, then the density and
the order parameters at z =/ are very close to the bulk
values. When the temperature, chemical potential and
volume are fixed, the grand-canonical potential 02 is
a functional of the one-particle distribution function
p'V, and the global minimum of £ corresponds to the
equilibrium state of the system. Formally we can also
consider a minimization of 22 over a set of p'! satisfying
the constraint 6(z =/) = 6;. Then the minimum of 02 over
the constrained distributions, denoted €, is a function
of 7 and 0;, and the equilibrium state results from the
minimization of Q with respect to 6.

The anchoring direction 6, is a property of a single
NLC-substrate interface, i.e. it is the equilibrium
orientation assumed by the director infinitely far from
the interface if there are no bulk external fields or other
surfaces. Thus, if 0,,;,(/) denotes the minimum of Q(/, 6;)
at / fixed, then 6, =Ilim/»q 60,,;,(/). Before we provide
thermodynamic definitions of interfacial quantities, we
recall briefly the phenomenological approaches, e.g. the
Rapini-Papoular formalism, in which @ is the only
relevant variable and the free energy (per unit area) of
the NLC is postulated to be the following functional of
0(z):

!

1 do\?
F[9]=F0+_JK(9) — ) dz+ f,(6y). (1)
2 J, dz

In equation (1) F, is the orientation independent
bulk contribution, K(6) =K, sin’> 6+ K, cos’ 6, where

K, K5 are the splay and bend Frank elastic constants,

respectively. The surface contribution to the free energy
/s 1s assumed to depend only on 6,= 6(z =0). Usually
the explicit dependence on the anchoring direction is
also included in the functional form of f,. However,
since we do not assume at this stage any particular form
of f,, we do not show this dependence explicity. It
suffices to say that 6, minimizes f,(6,). In the absence
of constraints and external fields, 6(z) = 6, also minimizes
the functional F[6]. If the constraint 8(z=1)=6; is
introduced, then one has to solve the Euler-Lagrange
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equation with the appropriate boundary conditions. We
denote the free energy calculated for 6(z) satisfying the
Euler-Lagrange equation by F, to distinguish it from
the functional F. F as a function of 6,, 6;, and / has the
following form

F(6y, 01, 1) =Fy+ F,(6y, 01, 1)+ f(6), (2)

where the elastic contribution is given by

1\ (? 2
Fe(0. 01. =", J [k(6)1"2de (3)
&

and 0,= 0,(0y, /) is found from the condition 6F/66,=0.
Hence, F can also be considered as a function of 6; and
[ alone, and we have

aF\ _for\ _ [k "
00, 1_ 00, 60’1_ 00, 60’17

It follows from equation (4) that F(6;, /) is minimized
by ;= 0, independently of /. We note that if F(6;, [) was
given a priori, then relation (4) could serve as the
definition of §,. We shall use this fact later to define
thermodynamically the ‘surface orientation’ 8, of the
director. This 8, can be understood as a result of
extrapolation of the director field from the region well
described by the Frank theory into the interfacial region.
Therefore, it usually differs from the actual orientation
of n at z=0.

It is instructive to find the explicit form of F(6;, /) in
the case of small deviations from the anchoring direction.
Then we have

1 1
F(6y, 01, 1) =Fy+ z_lKa(Oz— 6,)>+ EW(OO— 0,)>

(5)

where K,=K(6,) and w is the anchoring energy
coefficient. Minimization of F with respect to 6, leads
to the following expression

1 (6—6,)°
FOL D= K Tk (6)
a

where the ratio K,/w has the dimension of length.

In general, the strength of anchoring can be charac-
terized by the extrapolation length 4 [ 1], which appears
in the asymptotic form of 0(z) for large z. It results from
the minimization of the Frank elastic energy that far
from the surface

0(z) ~ 0, + const X (z+ b), (7)

provided that the deviation of 0(z) from 60, is
infinitesimally small. We shall consider the case of
arbitrary deviations later in this section. Dubois-Violette
and de Gennes [ 15] studied the effect of van der Waals
forces on the anchoring and showed that » can be

positive or negative. In the model considered above the
extrapolation length is given by b =K,/w [1] and it is
positive, because both K, and w must be positive to
ensure the stability of the free energy functional.

We now proceed to the general case and define the
function

1
(0, l)=;[!2(91, hH—9]. (8)

where €, is the orientation independent bulk contri-
bution to © and 4 is the area. The surface orientation
0, is defined as follows

0 OF, 1 o
ol ] B =—[1<<91>]“ZJ [K(0)1"2do.
o601 |, 00; ! / %

)

The above definition is a natural generalization of
relation (4); 8, as a function of 6; and / can be determined
provided that w(6;, 7) is known. If K; = K; =K we have

0, = 61— (IIK)owlol. Strictly speaking, if |(0w/06;)| was

sufficiently large, equation (9) might have no solutions.
Nevertheless, it is always possible to find 8, satisfying
(9) when 6, is close to 0,,,(/), and this is the case of
our main interest. We note that for 0;=0,;,(/) also
0y = 6,,;,(1). This means that in the absence of external
constraints there are no macroscopic deformations of n,
i.e. on a scale large compared with the thickness of the
interfacial region, and F,=0. However, even in the
absence of macroscopic deformations there can be some
variations of n in the interface, but they contribute only
to the surface part of Q together with variations of the
order parameters and density. Equation (9) can also be
written in a more familiar form, i.e.

u =K(0 4o =1 10
691 1_ I)dz(—'_ ): ( )

where the profile 8(z) minimizes the Frank elastic energy
alone and it is given by

d) -0
J [K(e)]”zde:;ﬁ [k(0)]"2de. (11)
(21 &

Let us suppose that z=/ is a mathematical surface
dividing a larger system into two sub-systems and o
corresponds to the sub-system containing the inter-
face. On the general grounds of variational principle,
equation (10) is expected to hold also for the real profile
0(z), provided that / is well inside the bulk region. Thus,
for large z the profiles 6(z) and 8(z) approach each other.
This means that 8(z) can be considered as an extra-
polation of the real profile into the interfacial region
in the spirit of the Frank theory. We note that the
mathematical surface z =/ has the same meaning as the
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dividing surface introduced in ref. [ 3], whereas (0, /)
can be identified with what Yokoyama calls the inter-
facial tension with respect to the dividing surface. We
take a different point of view, however, and define the
surface part of Q with respect to the physical surface at
z=0 as follows

701, ) =w(01, 1) — Fy(8,, 61, ), (12)

where 8, is given by expression (9). This means that we
have included in y only this part of the elastic energy
due to the director distortions which results from the
difference between the real profile and the extrapolated
one. Such a difference may result from the fact that the
Frank theory does not properly describe the inhomo-
geneous interfacial region or from the presence of long
range forces between the solid and the NLC [15].

In the case of the phenomenological model considered
above we simply have y(0;, /) = f,[6,(6:, 1)]. When [/ — ©
the torque transmitted to the surface of the substrate by
the elastic forces becomes vanishingly small and the
interfacial region is unaffected by changes of 6;. This
means that y(6;, /) tends to the equilibrium surface
tension for /— % independently of ;. Using definitions
(3),(9), and (12) we can express y explicitly as a function
of 9, and /, i.e.

0, )=w(0,! ! S ’ 13
701, )= o(01, ) kol a0 ) (13)

To make some contact with the phenomenological
approach, we invert the relation between 9, and 6, at /
fixed. It follows from the definitions of y and 8, that

2 oF, a9,
LA () () (9
00; |, 00, ol o0, |,

57/ 8Fgl _ dé
— = — =K 9 —(z=0
(aé0 )1 Bl ) (60) 4, E=0)

hence

0 9',1
K@, [|? /o
_| A =, (15)
K(6n) oo )
from which we conclude that 8, = 6,,;,(/) is an extremum
of y(8,, 1). Note that relation (15) is satisfied only for

0(z) and, in general, it does not hold for the real profile.
Differentiating (15) with respect to 8, we find

o2 | k@ 2K(8,) 061

o K'(0) 0w a0, \ !
— — ,(16)
007 2K (6)) 66 Gl

where
a0, | xwn |” IK'(0) 60 | o
o0, | K@) 2K%(0) 001 K(0) 007 |

(17)

and all derivatives have been calculated at / fixed.
Analogously with the phenomenological definition of
the anchoring energy coefficient [2] we define

_ %y &’ w i 8w -1
i=(22) =50 - posy :
690 min 691 min K(Qmin) 691 min

(18)

where the subscript min corresponds to 0,,;,(/); we also
define » = K(0,,;,)/w. Formally both w and » depend on
I, but we expect them to have finite limits for /— o,
which we denote by w and b, respectively, and hence
w=K,/b. We note that this assumption is compatible
with the asymptotic formula for /— o

0w K,
— ~— 1
(69% )min I+ b (19)

To show that expression (19) holds and b is the
extrapolation length, let us consider w as a function of
I and p;, where p; is the gradient d6/dz at z=1/. Then 6;
is not an independent variable, but is also a function of
[ and p;, and we have

ow ow ow 00,
— = — + [ — — . (20)
() () ().

It follows from the definition of the extrapolation length
that for large / and infinitesimally small gradients

01~ 0, + pi(1+b). (21)

If p; is fixed and 7 is large an infinitesimal change of /
cannot affect the structure of the interfacial region. Then
the change of o is simply equal to the change of the
elastic energy and it is given by

oo —lK ? (22)
ar ), 27

In the neighbourhood of 6, (), ®(6;, I) has the following
form

1 2 1 2
(0], I)Nng(l)[Qz— Omin(D 1 Nwz(l)g(Ql— 0,)",

(23)

where we have included only the leading term in the
asymptotic expansion for large /. Substituting equations
(22) and (23) into (20) and using (21) we find that the
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coefficient w, (/) satisfies
dw 2w K
=%, =% Tra (24)

ar i+ b ()2

hence w,(/)=K,/(I+ b). Thus, we have shown that for
large / and small deivations from the anchoring direction
the asymptotic formula

1 (6,—6,)>2
o0, hm~K, —

, 2
2 I+b (25)

where b is the extrapolation length, is valid.

It does not follow from the definition of y that it is
independent of / when 8, is fixed. Therefore, we have to
consider a possible change of y with /, which is given by

TN (N (N (R (2
a ) \a ), \og )\ & ),

Differentiating equations (9) and (13) with respect to /
and using (15) we find, after the substitution into (26),

that
oy ow 1 dw \?
- = — )+ — 1. (27
ol % ol g 2K(6)\ 261 ),

If we keep in equation (27) only the terms of order
(61— 6,)* we can approximate K(6;) by K(6,), and sub-
stituting the asymptotic form (25) into (27) we find that
(0ylohg =0. In this asymptotic sense y—y,, where y,
corresponds to the anchoring direction, is a function of
0, alone and it can be identified with the anchoring
energy function. There are, however, important differ-
ences betweeen y defined by equation (12) and f,(6,)
postulated phenomenologically. First of all, f, appears
in the free energy functional (1), where 6,, 6;, and [/ are
considered as independent variables. Usually, it is tacitly
assumed that f,(6,) is well defined not only in the
neighbourhood of the anchoring direction but in the
whole range between 0 and =. In our approach, we
consider only the states of the system that mimimize the
grand-canonical potential. Therefore, the range of 9, in
which y is defined depends on /, and it decreases when
/|-, This means that y is defined only in some
neighbourhood of 6,,;,(/), and when / is large y becomes
a function of 8, alone. Although the leading term of the
asymptotic expansion of y(8,, /) is independent of /, in
general, some / dependent corrections are expected.
However, the form of these corrections will depend on
the range of the NLC-substrate interactions.

We have identified w with the anchoring energy
coefficient (see equation (18)), which is related to the
extrapolation length via w=K(6,)/b. However, the
phenomenological model of the form given by equation (1)
is self-consistent only if the anchoring energy coefficient
is positive. Since there is no reason to assume that 5 is

always positive [ 15], w<<0 is also possible. To maintain
a simple phenomenological description of the NLC—
substrate interface in the case of w<<0, it is necessary to
add other tems to the free energy functional, as was
done for instance by Dubois-Violette and de Gennes
[15]. Then f,(6,) takes into account only the short
range forces. Therefore, its minimum can be different
from the macroscopic anchoring direction, because of
the presence of other interactions. On the other hand,
w obtained from equation (18) is always meaningful,
even though w<{0 means that y(8,, /) has a maximum
at 0,=0,,,(). However, this does not violate the
stability condition, since 8, and 6; cannot be varied
independently of each other.

So far we have concentrated on the case of infinitesimal
deviations of 6; from the anchoring direction. However,
it is possible to generalize the definition of the extra-
polation length to the case of arbitrary 6; and /. To do
this, we consider the profile 8(z) and define the function
b.(01, 1) that satisfies the condition 8(z = — b,) = 0,,;,(1),

ie.
o 0
b (6, I)ZIJ [K(Q)]I/Zde J [K(Q)]I/Zde,
Omin o

(28)

Using definition (9) we find the explicit relation between

o and b,
o _ L (% 29
o0, )i 1+b.0n. D\ 200 ) (29)
1 0 2
g6, =" J [kK(0)]172do ¢ .
2 O

Imin
Using (29) and the definition of 5 one verifies that
BF=b (0. 1)
Then we integrate equation (29) to express (0, /) in
terms of b, as follows

where

g6, D)

01 1) = () +
o(01, 1) = oy, (1) I+ b.(01 1)

+Aw(6, 1), (30)

where o,,;,(/) = ol 6,,,(]),!] and

o ob 2(0,1)do
Aw(0, )= J N +72
e \ 00 )i LI+ 5e(0.D)]
Hence, for large / and 6; close to 6,, b,~b and we

recover formula (25). Using equation (13) we can also
express y in terms of b, as follows

g(01, Db (61, D)

= i
y(61, 1) COmm(l)-i_ [l+be(91, l)]2

+ Aw(6y, ). (31)

Because of the relation between g(8,,7) and g(6;, 1),
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which follows from the definition of b, we find that

g(e(): l)
b (01, 1)

Y= 0,1+ +Aw(0, 1), (32)
where 8, and 6; are treated as dependent variables. If
we neglect variations of w,;, and 6,,;, with / and assume
that b,(6;, I)~b then
9,, ©
P () +E (33)
i.e. y can be treated as a function of 8, alone. Although
in some practical cases this may be a good approxi-
mation, in general it is justified only if /— % and 6;— 0,.
As we have argued above, to study the phenomenon
of anchoring from the thermodynamic point of view it
is not really necessary to introduce a concept of the
surface tension as a function of the surface director. In
some sense, in our considerations it has been only an
auxiliary quantity, introduced to show the correspond-
ence between the thermodynamic and the phenomeno-
logical approaches. The whole information about the
system is contained in the function (0, /), which is
uniquely defined. The asymptotic behaviour of w for
I— o simply reflects the presence of elastic forces,
but it also provides information about the strength of
anchoring, expressed in terms of the extrapolation length.

3. The Landau—de Gennes model

In the Landau-de Gennes model, the NLC is
described in terms of the nematic order parameter Q,
which is a traceless, symmetric tensor. The director i is
the eigenvector corresponding to the largest eigenvector
of Q, called the scalar order parameter 0. We neglect
fluctuations and assume that Q depends only on z, and
the free energy density is given by f = f;(Q)+ /5(Q),
where Q =dQ/dz. The first term describes a homo-
geneous system and the second term takes into account
spacial inhomogeneities. The following forms of f; and
fg are assumed:

Q) =ATrQ>— BTrQ*+ C(TrQ?) (34)
1 1
fc‘(Q)=;L 1 TTQ2+5L .k Q2 k. (35)

The parameter 4 is assumed to depend linearly on the
temperature, whereas B, C and the elastic constants
L, L, are considered as temperature independent.

We consider a NLC sample of finite thickness / and
assume the free energy functional in the following form
[16,27]:

/

F= f A=A 1Q( ] = QD+ fa[Q(A ]} + £.(Q).
0

(36)

where Q,=Q(z=0)and Q;=Q(z=/). The surface con-
tribution to the free energy f, is expanded up to the
second order terms in Q, which for isotropic substrates
gives

£(Qy)=c,k Q) K+ ¢, TrQ2+¢;(k Q, k)2
+ ¢,k QF K, (37)

where ¢, ..., ¢, are constants. F is minimized subject to
fixed boundary conditions at z =/, specified by 0;, 0y,
and the biaxiality P;. If / is large compared with the
thickness of the interfacial region, one can use the
approximation Q;~Q,, P;=P,=0, where 0, and P,

denote the bulk values. However, to solve numerically
the set of Euler—Lagrange equations, we assume different
boundary conditions at z=1/, ie. Q(/)=P(/)=0. We
return to this point in the next section.

To reduce the number of parameters in the free energy
and to deal with dimensionless quantities, we perform
the following scaling: Q — (B/4C)Q, z+—> [6(L ,C)?/B]z,
F>[(L,0)B96C*1F,  ¢;—[(L,C)'?B*124C]¢,,
and ¢~ [(L,C)'?BI6C]c;, i=2,3,4. Then Q is
expressed in a laboratory fixed frame as follows:

—‘31'q+p 0 v
Q= 0 —3¢—p 0 |. (38)
y 0 '%q

Hence, the dimensionless f;, fi, and f, are given by
1 ) ) )
fG=5(M1q2+ M2p2+ M3v2), (39)

where M, =2/3+(4/9)L ,/L |, My =2, My=2+ L ,/L,
fi=14*=2¢*+¢*+3(t+6q+2¢*)p>+3(1—3q+24*)v?
—27pv2+9(p?+ )2, (40)

where 7 =244 C/B* measures the temperature, and

1
fi= —hqo+g(glq§+gzp%+gsv(2>), (41)

where h=—(2/3)c|, g,=(419)(3cy,t2c3F2¢,), g,=4c,,
g3=2(2¢,+ ¢4). For simplicity, we have used the same
symbols (¢;) in the dimensionless f;. The minimization
of F results in the following set of non-linear differential
equations:

M g=2tq— 64>+ 44>+ 3(6+4q)p*>+ 3(— 3+ 49)»?
(42)
Myp=6(t+6q+2¢>)p —27v*+36p(p>+1?)
(43)
M3y =6(t—3q+2¢%)v — 54pv+ 36v(p>+1?)
(44)



20: 25 25 January 2011

Downl oaded At:

The thermodynamic approach to anchoring in NLC 383

with the boundary conditions at z =0:

MIQ(O)Z—h+g1q(0) (45)
M p(0) =g,p(0) (46)
M39(0) =g;v(0). (47)

If at z =1 the boundary conditions Q;=Q, and P;=0

are chosen then
3.
qIZQb(l—gsmzez) (48)

1
p]ZEQb sin? 0, (49)

1
VI:ng sin 20;. (50)

We focus our attention on the problem of the
homeotropic—conical anchoring transition. First, we seek
the limit of stability of the homeotropic anchoring. To
do this, we assume that ¢(z), p(z), and v(z) can be
expanded in 9; around 9;=0 up to the second order as
follows

q(2)~q'V() + ¢ ()67 (51)
p(2)~p?(z) 07 (52)
v(z)=vD(2)6; (53)

with the boundary conditions at z=/ ¢/~Q,(1—367/2),
P~ QL082, and v~Q,6;. It can be shown that the

contribution to the equilibrium free energy up to
the second order in 6; comes only from ¢ and vV, The
uniaxial solution ¢%(z) satisfies

M3 " =21g" — 6 [T+ 4[4"T (54)

with the boundary conditions: M4 (0)=—h+g,¢(0),
¢9(1) = 0y, and 'V satisfies the linearized equation

M3’\>m=6{t—3q(0)+2[q(0)]2}v(” (55)

with the boundary conditions: M;vV(0)=g;vV(0),
v(7)=Q,. The expansion of the free energy in 6; has
the following simple form:

1
FNF(O)+5M3Qb\3“)(l)912 (56)

and the loss of stability of the homeotropic anchoring
occurs when v()(/) =0. We have solved equation (55)
numerically to find the bifurcation temperature tyc as a
function of / (see figure 1).

It is also of interest to find when the homeotropic
alignment becomes unstable if the boundary condition
0;=0 is assumed. This instability can be classified as a
Fréedericksz transition [ 1], although in this particular
case it is driven by changes of the temperature or the
sample thickness, and not by a bulk external field.

0.8 [=Ts] =] - ]
r

0.6 | . .

0.2 @ HC 4

0.0 , 1 [l L
0 10 20 30 40 50

1

Figure 1. Temperatures of the homeotropic—conical transition
tye (squares) and the Fréedericksz transition ¢ (circles) as
functions of the sample thickness 7 results obtained from
the birfurcation analysis.

Because of the elastic energy contribution, the nematic
sample can remain homeotropic even though close to
the substrate a tilted alignment is already favoured by
the NLC-substrate interaction. The instability occurs
when a non-zero solution of the linearized version of
equation (44), which satisfies the boundary condition
v(/)=0, appears. In figure 1 we plot both ty- and the
temperature of the Fréedericksz transition 7 as functions
of I. We have chosen the following surface para-
meters: h~ — 0-527, g, ~1-792, g, = g;~3:162, obtained

from the surface parameters of ref. [17]: ¢, = — 05,
c2n=0-85, cou=rc2,=05, for which the homeotropic-
conical transition is continuous. The two sets of sur-
face parameters are related to each other as follows:
h=—c¢1&, 81= 2280, &= 6¢u&y, 3= 6¢2,5, Where

&=1[234+(49)L,/L 1" and L,=L, have been
assumed. For large /, t3c(/) tends to the limiting value
the(®)=~0-7908, which differs only slightly from the

transition temperature found in ref. [ 17] for a particular
value of /, not given by the authors, however. The bulk
correlation length parallel to the director &j=0-51 at
t=tyc(®). Larger deviations of ryc(!/) from ryc(®)

occur only when /<<5. In figure 2 we have plotted ty¢
against exp[—1//&(ryc)] to show an asymptotically
linear relation between them. When /— the tem-

perature of the Fréedericksz transition tends to the same
limit as 7y (/), albeit much more slowly. We have found
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0.60 .

HC a

0.40 4

10

0.20 ! t
0.00 0.02 0.04 0.06 0.08

cXp ['l/én(tHc)]

Figure 2. Temperature of the homeotropic—conical transition
versus exp[—1/g)(1¢c)]; &) denotes the bulk correlation
length in the direction parallel to n.

that for large / the asymptotic relation 7p(/) ~ 1// holds,
which is shown in figure 3.

4. Results
In the case of the conical anchoring, differential
equations (42-44) for the components of Q can only be
solved numerically. To do this, we have used a relaxation
method for solving two point boundary value problems
[28]. The boundary conditions at z=0 are given by

0.8 . T . T

%
\.

...

[ ]
0.6 ° J

[ ]
o
tF 04 r J
®

02+ .
00 . [ ]

0.00 0.02 0.04 0.06 0.08 0.10

Figure 3. Temperature of the Fréedericksz transition versus 1/1.

equations (45-47), and at z=/ we have assumed
Q(H=P()=0, 0(/)=6;, which for smaller values of /
is more realistic than the bulk boundary conditions:
0(l)=0y, P(I)=0. To transform the boundary con-
ditions at z =/ to the laboratory fixed frame, we use the
relation between ¢, p, v and Q, P, 6:

1 3
q=gQ(3 00329—1)+;Psm29 (57)
1
p=P+5(Q—P) sin” 6 (58)
1
VZE(Q_P) sin 26, (59)

and hence we find the relation between ¢, p, vand Q, P, 6.
Eliminating 0(/), Q(/), and P(/) we obtain the three
boundary conditions at z =1

3
q(l) cos 291-1-;\3(1) sin 20,=0 (60)

1
p(I) cos 291—;\5(1) sin 20;=0 (61)

[g(D)—p(l)]sin 26, — 2v(I) cos 26, =0. (62)

In all cases, as an input for the relaxation method, we
have used constant profiles: ¢(z) =(0y/2)(3 cos’ 9;— 1),
p(2) =(Qy/2) sin? 6;, and v(z) =(Q,/2) sin 26,. The con-
vergence of the method is very good as the number of
iterations required to obtain the solution with an
acccuracy ~ 1077 has been smaller than 20. We have
been solving the Euler-Lagrange equations for various
values of 7 and / assuming the same surface parameters
asinref.[17] and L =L ,.

In figure 4 we plot the equilibrium free energy F(0;)
(for simplicity the dependence on / and ¢ has been
suppressed), for /=50 and r=0-6. This is well below
the Fréedericksz transition at 7p(50)~0-68 obtained
from the bifurcation analysis. Since F(— 6;) = F(0;), only
the branch with 6,=0 is shown. The minimum of F(6;)
corresponds to the equilibrium tilt angle, and at ;=0
there is a local maximum in the form of a cusp. At
0;=0 there are three solutions of the Euler—Lagrange
equations: the uniaxial solution p(z) =v(z) =0, with the
free energy F*(0), and two solutions with a distorted
director field, corresponding to the equilibrium free
energy F(0). The equilibrium solutions differ only in the
sign of v(z). The uniaxial solution belongs to the unstable
branch of the free energy (not shown in figure 4); hence
F*(0)> F(0). Occasionally, our numerical procedure has
converged to a solution belonging to the metastable
branch of F, which is the analytic continuation of F(6)
into the region of 6;<<0. For 7, <<¢ <1y, the metastable
and unstable branches of F(6;) disappear and the free
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energy of the uniaxial solution is equal to F(0). An
example of such a behaviour is shown in figure 5 for a
temperature slightly above 7. In figures 4 and 5 we
have restricted the range of 6; to 30° to show the shape
of F(6;) in the vicinity of 8;= 0 in more detail; otherwise
F(6;) would appear very flat for 0<<6,<9,,;,. We note
that F*(6,=90°) obtained from the solution of the
Euler-Lagrange equations with v(z) =0 also differs from

0.361 l T .
0.360
0.359
0.358

0.357

0.356 L :
0 10 20 30

el

Figure 4. Free energy as a function of ; for /=50; r=0-6 is
below the Fréedericksz transition. The square corresponds
to the unstable uniaxial solution of the Euler—Lagrange
equations.

0.300 T .

0.299

0.298

0.297 : ;
0 10 20 30

el

Figure 5. Free energy as a function of ¢, for /=50; t=0-7 is
slightly above the Fréedericksz transition. The uniaxial
solution (square) belongs to the stable branch of F(6;).

the equilibrium value £(90°), and the difference is much
larger than in the previous case. By analogy, we can
expect that for a suitable choice of parameters a
Fréedericksz transition at 6,=90° could be observed.
We have not studied this problem, however.

In figure 6 we plot 6,=6(z=0) against 0, for two
temperatures: below and above ¢g. For r<<rg, the
function 6,(6;) is discontinuous at 6;=0, which is an
indication of a first order transition between the states
90(0+) and 6,(07). At r = 1 the discontinuity disappears,
and for r>1y, 6, goes smoothly through zero. Here 6,
plays a similar role to an external field, and =1,
0;=0 is the critical point in the (7, 6;) plane.

We have also calculated the second derivative of F
with respect to 6; using the cubic spline interpolation.
In figure 7 (a) to 7(c) we plot a,,;,(/) and «,(/), defined as
K(8?FI1067) " at the minimum and at ;= 0, respectively,
for 1 =06, 0-785, 0-789, and 5</<50. In all cases the
function o, (/) =+ b(/) is linear with the unit slope, in
accord with equation (19), even for temperatures very
close to tyc. In the case of oy, we have also found a
linear dependence on /, but very close to 7y the slope
slightly deviates from unity. For 1 =0-6 (see figure 7 (a)),
ay(l) =0 at /~=30. This corresponds to the Fréedericksz
transition, at which (8°F/067)(0) diverges. We have
not shown oy(/) on the other side of the Fréedericksz
transition, as the calculation of (82F/867)(0) with the
help of the spline interpolation is less reliable in this
case because of the cusp (see figure 4).

To find the behaviour of the anchoring energy in the

15.0 | I T T
canesses®

ooooooooooooooo.ooooo.

ooeee®®
...ooooo-o
10.0 - |
() oooo°°°°°°°°
0 oooOO°°°
o°°°°°
o°°°°°
0 o°oo i
o
°
oo° ° t==().(i
o
o
oo o t=:().’7
o

0.0 & . | | I

0 1 : 3 4 |

1

Figure 6. Orientation of the director at the substrate 6, versus
6, below (t=06) and above (1=0-7) the Fréedericksz
transition, for /= 50.
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Figure 7. K(3*Flo6f)™' as a function of [, a

(squares) and «, (circles) correspond to 6,=6,, and

min

=I/+b

0,=0, respectively: (@) t =06, (b) t =0-785, (¢) t =0-789.

vicinity of the homeotropic—conical anchoring transition,

we first define
_FE(rer o
‘T o007 Koot | (63)

hence u,,;, = u(6,,;,) = w (see equation (19)) and uy=u(0).
Both u,,;, and u, as functions of ¢ are plotted in figure 8,
for /=10. In the range of temperatures shown in figure 8
the dependence on ¢ is approximately linear. At r =1y
both u,;, and u, are equal to zero, but u, changes sign
at the transition, whereas u,;,=>0. The ratio of the
slopes of u,,;, and u, is approximately — 2.

The results presented above can be qualitatively
explained by means of the phenomenological model
considered in §2. In the case of K, = K; =K we have

K 2 2 4
F(6,, 61, 1) :2_1(9]_ 0p)"+ wy 05+ w, 65, (64)

where we have assumed a specific form of f,(6,) with
w,>0 and w, changing sign at the homeotropic—conical
transition. The minimization of F with respect to 9, at
constant 6; gives

K K
(2w2+7)90+4w493=79/, (65)

The global minimum of F occurs at 6,= 6,= 0,, where
0, is the minimum of f, independently of /. Also in the
Landau-de Gennes model 6,;, is approximately con-
stant provided that />¢&|. For 6,=0, the Fréedericksz

0.10 T r r r
o
o l=10
0.05 - a .
®
o
®
u ®
o .
)
0.00 ° 8
.
.
°
°
®
_0.05 1 1 1 L
0.74 0.76 0.78 0.80 0.82 0.84
t

Figure 8. u=(8*FIo07)[1 — (1K) (6*FIo07)]1™! versus tem-
perature in the vicinity of the homeotropic—conical trans-
ition, for 6,= 60, (squares) and 6,=0 (circles); 0, =0
above r¢.

min
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transition occurs when 2w, + K//=0. Then we calculate

the second derivative of the function F[6,(6y, 1), 61,1]
with respect to 6;at the minimum and 0;= 0, respectively.
This gives

O F K(I+K2wy)™! ifwy,>0
—%(ea) = o (66)
00 K(I— K/4w,) if w, <0
and
K(I+ K2wy) ™! if 14+ K2w, <0
0*F
Q(O) = K(1+ 3K/4wyl)(I+ K/2w,) 7! ,
[
if 14+ K12wy,>0
(67)

which means that at the Fréedericksz transition
(82FI567)(0) diverges. Since at the Fréedericksz trans-
ition 1+ 3K/4w,I= —1/2, (*FI067)(0)<0 above and

directly below the Fréedericksz transition, and it changes
sign at w, = — 3K/4/. Using the definition of u we find
that

2w, ifw,>0
Unin = . (68)
—4w, ifw,<<0
and

2w, if I+ K/2w, <0
Uy = ) (69)

— (4w, + 3K/1) if 14 K2w, >0
which explains the behaviour of u in the vicinity of the
homeotropic—conical transition shown in figure 8. It
follows from equations (66) and (67) that the slopes of
Omin and o, are the same in the limit of /— o0,
Equation (67) also predicts that above the Fréedericksz
transition « is a linear function of / with unit slope. The
difference between the two slopes shown in figure 7 (c) is
too small to draw any definite conclusions. However, it
suggests that for / above the Fréedericksz transition the
dependence of «, on / may differ from that predicted by
equation (67). This point requires further investigation.

Finally, we find that at the Fréedericksz transition:

F:K—%—3w4_1/3 — , (70)
21 41

which is non-analytic at 6;=0.

5. Discussion
We have studied the polar anchoring in the NCL-
amorphous substrate system and proposed thermo-
dynamic definitions of the surface director, the surface
tension and the anchoring strength. It follows from these
definitions that y as a function of the surface director
i, can be defined only locally in some neighbourhood

of the anchoring direction. The range of accessible
orientations of fi, depends on / and it reduces to the
anchoring direction when /— . The anchoring strength

can be defined by means of the anchoring energy
coefficient or the extrapolation length. The latter appears
most naturally in the asymptotic expansion of the excess
grand-canonical potential for /— %, and we have argued

that it must be the same as the extrapolation length
introduced by de Gennes [ 1 ] by means of the asymptotic
behaviour of the director field. Since the surface excess
part of @ is uniquely defined, the definition of the
extrapolation length is also unique. This is in some
contrast with the approach used by Yokoyama [3], who
defines various surface quantities with respect to an
arbitrary dividing surface; thus, the surface tension and
the anchoring strength are meaningful only in relation
to that surface. From the experimental point of view this
approach turns out to be convenient. Indeed, in experi-
ment one measures some response of the system, e.g. the
optical phase retardation, to the given stimulus. Then
the result of measurement is interpreted in terms of the
theoretical response calculated for the ideal system, i.e.
for the NLC which is bulk-like between the dividing
surfaces. However, there always exists some ambiguity
in the location of the dividing surface, because of the
unknown interfacial structure. On the other hand, the
problem of ambiguity of the extrapolation length does
not appear on the conceptual level, at least as long as
the surface is flat and smooth. Then the distance from
the solid substrate is a well defined thermodynamic
variable, and a thermodynamically consistent definition
of the extrapolation length should refer to the physical
surface of the substrate.

In our studies we have considered explicitly only a
single NLC—substrate interface. The surface z =1/, where
the orientation of the director can be controlled, has a
sense of a mathematical surface which does not modify
the NLC structure. If there is another substrate at z=1/
we can easily extend our analysis by introducing a
mathematical surface at z =1/2. The total o is a sum of
the two contributions from both interfaces and in the
equilibrium it has to be minimal. We find that for large
[ it is given by the asymptotic expression

! 6((5) 1/2 :
T a4 s+ 5] Lﬁh [k®]"*do ¢, (71)

where 6V, »V and 0%, »? correspond to z=0 and
z=1, respectively. dw/d! is related to the disjoining
pressure, which has been measured in the case of simple
fluids [29].

We have applied the general formalism to study the
Landau—de Gennes model of the NLC—substrate inter-
face. Even very close to a continuous homeotropic—
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conical transition the asymptotic formula for the free
energy holds. However, the function 5.(6;, /) can be
approximated by its limiting value for /— o only if / is

sufficiently above the value at which the Fréedericksz
transition at the given temperature occurs. The pheno-
menological model considered in §4 (see equation (64))
predicts the Fréedericksz transition at /=2b, where
b= — K/(4w,) and w,<<0. For / below the Fréedericksz

transition the dependence of 5, on 6; becomes important,
especially when 6;— 0. Thus, for temperatures close to
tuc» the asymptotic relation b.(6;, )~ b is satisfied only
if / is very large, and eventually /— «© when 7 — #;-. On

the other hand, the convergence of 5(/) to b is rather
fast, and for / fixed and t— t3(/), 5 — . This means
that the anchoring energy coefficient vanishes at a
continuous homeotropic—conical transition.

In our studies of the Landau-de Gennes model we
have considered only the case of a positive extrapolation
length. Certainly it must be positive and large in the
vicinity of a continuous anchoring transition. However,
far from the transition, negative values are also possible.
We think that the case of a negative extrapolation length
might be interesting, since it cannot be studied by means
of the phenomenological model introduced in §2, and
requires a different approach. We defer studies of this
problem to a future work.

This work was supported in part by a KBN grant
(No. 3T09A07212).
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