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A thermodynamic approach to the anchoring phenomenon in the

nematic liquid crystal± substrate system

by A. PONIEWIERSKI* and A. SAMBORSKI

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52,
01-224 Warsaw, Poland

(Received 10 March 1997; accepted 30 May 1997 )

The phenomenon of anchoring in the nematic liquid crystal± amorphous substrate system is
considered and model independent de® nitions of the surface nematic director, the surface
tension and the anchoring energy coe� cient are proposed. Then the Landau± de Gennes
model of the system is studied for a speci® c choice of the surface parameters, which leads to
a continuous homeotropic± conical anchoring transition. The free energy as a function of the
director at a distance l from the surface is found. It is shown that its form is di� erent in two
regions of the temperature± distance plane separated by the line of a FreÂ edericksz transition.
The asymptotic behaviour of the free energy for large l and for in® nitesimal deviations of the
director from the anchoring direction is studied. It is found that the asymptotic formula holds
also in the vicinity of the anchoring transition. Finally, the results of numerical studies of the
Landau± de Gennes model are compared with the predictions of a simple phenomenological
model.

1. Introduction logical approach is the Rapini± Papoular [24] formalism,
It is well known that nematic liquid crystals (NLCs) in which the form of the orientation dependent part of

can be oriented by various limiting surfaces, for instance c, referred to as the anchoring energy function, is
the surface of a solid substrate. This phenomenon is merely postulated. The problem can be formulated more
called the anchoring of the NLC at interfaces [1± 7]. generally as follows: how can we de® ne c as a function
Due to the interaction of the NLC with the substrate, of the director at the interface nÃ 0 and what is really
there exists a set of preferred orientations of the bulk meant by nÃ 0? To consider c as a function of nÃ 0 , it is
nematic director nÃ , called the anchoring directions, necessary to deform the equilibrium con® guration of the
which correspond to the equilibrium states of the director by means of an external ® eld or by a strongly
system. In the case of an amorphous substrate the set anchoring wall placed a distance l from the substrate.
of anchoring directions is continuously degenerate. If h Then c is de® ned as the surface part of the grand-canonical
denotes the angle between nÃ and the surface normal kÃ potential V per unit area. In the absence of bulk external
then the homeotropic (H), planar (P), and conical (C) ® elds, the bulk contribution to V consists of two parts:
anchorings correspond to h=0, h=p/2, and 0<h <p/2, V0 , which is independent of any deformation, and the
respectively. The phenomenon of anchoring and phase Frank elastic energy of deformation. To de® ne the surface
transitions between di� erent types of anchoring attract contribution to V , Yokoyama [3] has introduced a
a good deal of attention, and they have been studied Gibbs dividing surface placed at some distance zd from
both experimentally [8± 13] and theoretically [14± 23]. the surface of the substrate. The NLC above the dividing

The anchoring of the NLC is usually characterized surface is considered as having a bulk-like behaviour.
by two quantities: the anchoring direction and the Then c(zd , nÃ d ) is de® ned with respect to that arbitrarily
anchoring strength. While the anchoring direction is a chosen dividing surface. Hence, the anchoring energy
well de® ned concept, there have been some problems coe� cient, which is de® ned as the second derivative of
with the de® nition of the anchoring strength [3]. The

c with respect to the director orientation taken at the
latter usually appears as a parameter in phenomeno-

anchoring direction [2], is meaningful only in relation
logical expressions for the surface tension c between the

to the dividing surface.
NLC and the substrate, and it is called the anchoring

In this paper we reconsider the problem of the thermo-
energy coe� cient [2]. An example of such a phenomeno-

dynamic de® nition of the anchoring strength. First, we
de® ne V as a function of the b̀ulk’ director nÃ l at a
distance l from the substrate surface. This is the only*Author for correspondence.
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378 A. Poniewierski and A. Samborski

physical surface in the problem and as long as it is the bifurcation analysis. The results obtained from the
numerical solutions of the Euler± Lagrange equationssmooth, l is a well de® ned thermodynamic parameter.

Therefore, there is no reason to introduce an extra are presented in § 4, and § 5 is devoted to a discussion.
dividing surface that separates the interfacial region of
the NLC from the bulk, as there is no good criterion 2. Thermodynamics of anchoring
for locating such a surface. In general, V depends also We consider a NLC in contact with an isotropic solid
on l and its minimum at l ® xed de® nes the equilibrium substrate. The nematic direction nÃ , the density and the
orientation of the director at z = l, denoted nÃ min . To order parameters depend only on z, i.e. the distance
determine the bulk contribution to V , we de® ne a from the surface of the substrate located at z =0. We
s̀urface direction’ nÃ Å 0 ; it is usually di� erent from the consider an idealized situation where it is possible to
actual director at z=0. It follows from our de® nition control the orientation of the director at z= l by some
of nÃ Å 0 that if nÃ l=nÃ min then also nÃ Å 0=nÃ min and the Frank external factor without changing the structure of the
elastic energy vanishes. Then the surface tension is ¯ uid. In other words, if l is large compared with the
de® ned as a function of l and nÃ l rather than nÃ Å 0 . However, thickness of the interfacial region, then the density and
close to nÃ min the relation between nÃ l and nÃ Å 0 can be the order parameters at z = l are very close to the bulk
inverted and c can also be considered as a function of values. When the temperature, chemical potential and
nÃ Å 0 , which allows us to de® ne the anchoring energy volume are ® xed, the grand-canonical potential VÄ is
coe� cient. For a ® nite system, this coe� cient formally a functional of the one-particle distribution function
depends on l; however, we are mainly interested in r(1), and the global minimum of VÄ corresponds to the
its limiting value when l � 2. We show that in this equilibrium state of the system. Formally we can also
limit the anchoring energy coe� cient is related to the consider a minimization of VÄ over a set of r(1) satisfying
extrapolation length [1]. the constraint h(z = l ) =h l . Then the minimum of VÄ over

The rest of the paper is devoted to numerical studies the constrained distributions, denoted V , is a function
of the Landau± de Gennes model. This model can be of l and h l , and the equilibrium state results from the
considered as a semi-microscopic one to distinguish it minimization of V with respect to hl .
from the phenomenological models in which the director The anchoring direction ha is a property of a single
® eld is the only variable. It also takes into account NLC± substrate interface, i.e. it is the equilibrium
variations of the order parameters. Recently we have orientation assumed by the director in® nitely far from
used a second order approximation of the Landau± the interface if there are no bulk external ® elds or other
de Gennes free-energy functional to study anchoring surfaces. Thus, if hmin ( l ) denotes the minimum of V ( l, h l )
transitions and the asymptotic behaviour of the free at l ® xed, then ha= liml � 2

hmin ( l ) . Before we provide
energy for l � 2 and for in® nitesimal deviations of nÃ l thermodynamic de® nitions of interfacial quantities, we
from the anchoring direction [25, 26]. In this paper we recall brie¯ y the phenomenological approaches, e.g. the
concentrate on the dependence of the free energy on nÃ l , Rapini± Papoular formalism, in which nÃ is the only
which is studied for various temperatures t and for relevant variable and the free energy (per unit area) of
various l. For simplicity, we choose only one set of the the NLC is postulated to be the following functional of
surface parameters that has already been studied by h(z) :
Teixeira et al. [17] in the context of the homeotropic±
conical anchoring transition. We show that below the

FÄ [h]=F0+
1

2 P
l

0

K (h)A dh

dzB2

dz+ fs (h0 ) . (1 )anchoring transition the dependence of the free energy
on nÃ l is qualitatively di� erent in two regions of the ( t, l )

plane, and the border line is the line of a FreÂ edericksz In equation (1) F0 is the orientation independent
bulk contribution, K (h) =K1 sin2 h+K3 cos2 h, wheretransition. We also study the asymptotic behaviour of

the free energy for large l and nÃ l close to the anchoring K1 , K3 are the splay and bend Frank elastic constants,
respectively. The surface contribution to the free energydirection, and we ® nd that the asymptotic formula holds

even very close to the continuous anchoring transition. fs is assumed to depend only on h0=h(z =0 ) . Usually
the explicit dependence on the anchoring direction isIt is also found that the anchoring energy coe� cient

vanishes at the continuous anchoring transition. also included in the functional form of fs . However,
since we do not assume at this stage any particular formOur paper is arranged as follows. In § 2 we provide

thermodynamic de® nitions of the surface director, the of fs , we do not show this dependence explicity. It
su� ces to say that ha minimizes fs (h0 ). In the absencesurface tension, and the anchoring energy coe� cient.

We also generalize the concept of the extrapolation of constraints and external ® elds, h(z) =ha also minimizes
the functional FÄ [h]. If the constraint h(z= l ) =hl islength. In § 3 we de® ne the model and study the

stability of the homeotropic alignment by means of introduced, then one has to solve the Euler± Lagrange
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379The thermodynamic approach to anchoring in N L C

equation with the appropriate boundary conditions. We positive or negative. In the model considered above the
extrapolation length is given by b =Ka /w [1] and it isdenote the free energy calculated for h(z) satisfying the

Euler± Lagrange equation by F , to distinguish it from positive, because both Ka and w must be positive to
ensure the stability of the free energy functional.the functional FÄ . F as a function of h0 , hl , and l has the

following form We now proceed to the general case and de® ne the
function

F (h0 , h l , l ) =F0+Fel (h0 , h l , l ) + fs (h0 ) , (2 )

where the elastic contribution is given by v (h l , l ) =
1

A
[V (hl , l ) Õ V0] , (8 )

Fel (h0 , h l , l ) =
1

2lG P h
l

h0

[K (h) ]1/2dh H2

(3 ) where V0 is the orientation independent bulk contri-
bution to V and A is the area. The surface orientation

and h0=h0 (hl , l ) is found from the condition qF/qh0=0. hÅ 0 is de® ned as follows
Hence, F can also be considered as a function of h l and
l alone, and we have A qv

qhlB l
=A qFel

qh l BhÅ 0
,l
=

1

l
[K (hl ) ]1/2 P h

l

hÅ 0

[K (h) ]1/2 dh.

A qF

qhlB l
=A qF

qhlBh0
,l
=A qFel

qhl Bh0
,l

. (4 ) (9)

The above de® nition is a natural generalization ofIt follows from equation (4) that F (hl , l ) is minimized
relation (4); hÅ 0 as a function of hl and l can be determinedby hl=ha independently of l. We note that if F (h l , l ) was
provided that v (hl , l ) is known. If K1=K3=K we havegiven a priori , then relation (4 ) could serve as the
hÅ 0=h l Õ ( l/K )qv/ql. Strictly speaking, if | (qv/qhl )l | wasde® nition of h0 . We shall use this fact later to de® ne
su� ciently large, equation (9) might have no solutions.thermodynamically the s̀urface orientation’ hÅ 0 of the
Nevertheless, it is always possible to ® nd hÅ 0 satisfyingdirector. This hÅ 0 can be understood as a result of
(9) when h l is close to hmin ( l ) , and this is the case ofextrapolation of the director ® eld from the region well
our main interest. We note that for h l=hmin ( l ) alsodescribed by the Frank theory into the interfacial region.
hÅ 0=hmin ( l ) . This means that in the absence of externalTherefore, it usually di� ers from the actual orientation
constraints there are no macroscopic deformations of nÃ ,of nÃ at z =0.
i.e. on a scale large compared with the thickness of theIt is instructive to ® nd the explicit form of F (hl , l ) in
interfacial region, and Fel=0. However, even in thethe case of small deviations from the anchoring direction.
absence of macroscopic deformations there can be someThen we have
variations of nÃ in the interface, but they contribute only
to the surface part of V together with variations of theF (h0 , hl , l ) =F0+

1

2l
Ka (hl Õ h0 )2+

1

2
w (h0 Õ ha )2,

order parameters and density. Equation (9) can also be
written in a more familiar form, i.e.(5 )

where Ka=K (ha ) and w is the anchoring energy A qv

qh lB l
=K (hl )

dhÅ

dz
(z= l ) , (10)

coe� cient. Minimization of F with respect to h0 leads
to the following expression

where the pro® le hÅ (z) minimizes the Frank elastic energy
alone and it is given by

F (hl , l ) =
1

2
Ka

(h l Õ ha )2

l+Ka /w
, (6 )

P hÅ
(z)

hÅ 0

[K (h) ]1/2 dh=
z

l P h
l

hÅ 0

[K (h) ]1/2dh. (11)where the ratio Ka /w has the dimension of length.
In general, the strength of anchoring can be charac-

Let us suppose that z = l is a mathematical surfaceterized by the extrapolation length b [1], which appears
dividing a larger system into two sub-systems and vin the asymptotic form of h(z) for large z. It results from
corresponds to the sub-system containing the inter-the minimization of the Frank elastic energy that far
face. On the general grounds of variational principle,from the surface
equation (10) is expected to hold also for the real pro® le

h (z)~ha+const Ö (z+b) , (7 )
h(z) , provided that l is well inside the bulk region. Thus,
for large z the pro® les h(z) and hÅ (z) approach each other.provided that the deviation of h(z) from ha is

in® nitesimally small. We shall consider the case of This means that hÅ (z) can be considered as an extra-
polation of the real pro® le into the interfacial regionarbitrary deviations later in this section. Dubois-Violette

and de Gennes [15] studied the e� ect of van der Waals in the spirit of the Frank theory. We note that the
mathematical surface z = l has the same meaning as theforces on the anchoring and showed that b can be
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380 A. Poniewierski and A. Samborski

dividing surface introduced in ref. [3], whereas v (hl , l ) where
can be identi® ed with what Yokoyama calls the inter-
facial tension with respect to the dividing surface. We qhÅ 0

qh l
=C K (h l )

K (hÅ 0 )D1/2C 1 +
lK ¾ (hl )

2K 2 (hl )

qv

qh l
Õ

l

K (hl )

q2v

qh2
l D ,

take a di� erent point of view, however, and de® ne the
surface part of V with respect to the physical surface at (17)
z=0 as follows

and all derivatives have been calculated at l ® xed.
c(h l , l ) =v (hl , l ) Õ Fel (hÅ 0 , h l , l ) , (12) Analogously with the phenomenological de® nition of

the anchoring energy coe� cient [2] we de® ne
where hÅ 0 is given by expression (9 ). This means that we
have included in c only this part of the elastic energy

wÅ =A q2c

qhÅ
2
0Bmin

=A q2v

qh2
l BminC 1 Õ

l

K (hmin )A q2v

qh2
l BminD Õ 1

,due to the director distortions which results from the
di� erence between the real pro® le and the extrapolated

(18)one. Such a di� erence may result from the fact that the
Frank theory does not properly describe the inhomo-

where the subscript min corresponds to hmin ( l ) ; we alsogeneous interfacial region or from the presence of long
de® ne bÅ =K (hmin )/wÅ . Formally both wÅ and bÅ depend onrange forces between the solid and the NLC [15].
l, but we expect them to have ® nite limits for l � 2,In the case of the phenomenological model considered
which we denote by w and b, respectively, and henceabove we simply have c(hl , l ) = fs[h0 (hl , l ) ]. When l � 2
w =Ka /b. We note that this assumption is compatiblethe torque transmitted to the surface of the substrate by
with the asymptotic formula for l � 2the elastic forces becomes vanishingly small and the

interfacial region is una� ected by changes of hl . This A q2v

qh2
l Bmin

~
Ka

l+b
. (19)means that c(hl , l ) tends to the equilibrium surface

tension for l � 2 independently of hl . Using de® nitions
(3), (9 ), and (12) we can express c explicitly as a function To show that expression (19) holds and b is the
of h l and l, i.e. extrapolation length, let us consider v as a function of

l and pl , where p l is the gradient dh/dz at z = l. Then h l

is not an independent variable, but is also a function ofc(hl , l ) =v (hl , l ) Õ
l

2K (hl )A qv

qhlB2

. (13)
l and p l , and we have

To make some contact with the phenomenological A qv

ql Bpl

=A qv

ql Bh
l

+A qv

qhlB lA qh l

ql Bpl

. (20)
approach, we invert the relation between hÅ 0 and hl at l

® xed. It follows from the de® nitions of c and hÅ 0 that
It follows from the de® nition of the extrapolation length
that for large l and in® nitesimally small gradientsA qc

qh lB l
=Õ A qFel

qhÅ 0 Bh
l,lA qhÅ 0

qhlB l
, (14)

h l# ha+p l ( l +b). (21)

hence If pl is ® xed and l is large an in® nitesimal change of l

cannot a� ect the structure of the interfacial region. Then
the change of v is simply equal to the change of theA qc

qhÅ 0B l
=Õ A qFel

qhÅ 0 Bh
l,l

=K (hÅ 0 )
dhÅ

dz
(z=0 )

elastic energy and it is given by

=C K (hÅ 0 )

K (hl ) D1/2A qv

qhlB l
, (15) A qv

ql Bpl

=
1

2
Ka p2

l . (22)

from which we conclude that hÅ 0=hmin ( l ) is an extremum In the neighbourhood of hmin ( l ) , v (hl , l ) has the following
of c(hÅ 0 , l ) . Note that relation (15) is satis® ed only for form
hÅ (z) and, in general, it does not hold for the real pro® le.

Di� erentiating (15) with respect to hÅ 0 we ® nd v (h l , l ) #
1

2
v2 ( l ) [hl Õ hmin ( l ) ]2#v2 ( l )

1

2
(hl Õ ha )2,

(23)
q2c

qhÅ
2
0
=C K (hÅ 0 )

K (hl ) D1/2G K ¾ (hÅ 0 )

2K (hÅ 0 )

qv

qh l

where we have included only the leading term in the
asymptotic expansion for large l. Substituting equations+C q2v

qh2
l

Õ
K ¾ (hl )

2K (hl )

qv

qh lDA qhÅ 0

qhlB Õ 1 H , (16)
(22) and (23) into (20) and using (21) we ® nd that the
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381The thermodynamic approach to anchoring in N L C

coe� cient v2 ( l ) satis® es always positive [15], w <0 is also possible. To maintain
a simple phenomenological description of the NLC±
substrate interface in the case of w <0, it is necessary to

dv2

dl
+

2v2

l +b
=

Ka

( l+b)2 , (24)
add other tems to the free energy functional, as was
done for instance by Dubois-Violette and de Genneshence v2 ( l ) =Ka /( l +b) . Thus, we have shown that for
[15]. Then fs (h0 ) takes into account only the shortlarge l and small deivations from the anchoring direction
range forces. Therefore, its minimum can be di� erentthe asymptotic formula
from the macroscopic anchoring direction, because of
the presence of other interactions. On the other hand,v (hl , l ) #

1

2
Ka

(hl Õ ha )2

l+b
, (25)

wÅ obtained from equation (18) is always meaningful,
even though wÅ <0 means that c(hÅ 0 , l ) has a maximumwhere b is the extrapolation length, is valid.
at hÅ 0=hmin ( l ) . However, this does not violate theIt does not follow from the de® nition of c that it is
stability condition, since hÅ 0 and h l cannot be variedindependent of l when hÅ 0 is ® xed. Therefore, we have to
independently of each other.consider a possible change of c with l, which is given by

So far we have concentrated on the case of in® nitesimal
deviations of h l from the anchoring direction. However,A qc

ql BhÅ 0

=A qc

ql Bh
l

Õ A qc

qhÅ 0B lA qhÅ 0

ql Bh
l

. (26) it is possible to generalize the de® nition of the extra-
polation length to the case of arbitrary h l and l. To do

Di� erentiating equations (9) and (13) with respect to l this, we consider the pro® le hÅ (z) and de® ne the function
and using (15) we ® nd, after the substitution into (26), be (hl , l ) that satis® es the condition hÅ (z =Õ be ) =hmin ( l ) ,
that i.e.

A qc

ql BhÅ 0

=A qv

ql Bh
l

+
1

2K (hl )A qv

qhlB2

l
. (27) be (hl , l ) = l P hÅ 0

hmin

[K (h) ]1/2 dhN P h
l

hÅ 0

[K (h) ]1/2dh.

If we keep in equation (27) only the terms of order (28)
(hl Õ ha )2 we can approximate K (h l ) by K (ha ), and sub-

Using de® nition (9) we ® nd the explicit relation betweenstituting the asymptotic form (25) into (27) we ® nd that
v and be(qc/ql )

hÅ 0
=0. In this asymptotic sense c Õ ca , where ca

corresponds to the anchoring direction, is a function of A qv

qhlB l
=

1

l +be (hl , l )A qg

qh lB l
, (29)hÅ 0 alone and it can be identi® ed with the anchoring

energy function. There are, however, important di� er-
ences betweeen c de® ned by equation (12) and fs (h0 ) where
postulated phenomenologically. First of all, fs appears
in the free energy functional (1), where h0 , hl , and l are g (hl , l ) =

1

2G P h
l

hmin

[K (h) ]1/2dh H2

.
considered as independent variables. Usually, it is tacitly
assumed that fs (h0 ) is well de® ned not only in the Using (29) and the de® nition of bÅ one veri® es that
neighbourhood of the anchoring direction but in the

bÅ =be (hmin , l ) .
whole range between 0 and p. In our approach, we Then we integrate equation (29) to express v (h l , l ) in
consider only the states of the system that mimimize the terms of be as follows
grand-canonical potential. Therefore, the range of hÅ 0 in
which c is de® ned depends on l, and it decreases when

v (hl , l ) =vmin ( l ) +
g (hl , l )

l +be (hl , l )
+Dv(h l , l ) , (30)

l � 2. This means that c is de® ned only in some
neighbourhood of hmin ( l ) , and when l is large c becomes

where vmin ( l ) =v[hmin ( l ) , l ] anda function of hÅ 0 alone. Although the leading term of the
asymptotic expansion of c(hÅ 0 , l ) is independent of l, in

Dv (hl , l ) = P h
l

hmin
A qbe

qh B l

g (h, l ) dh

[l+be (h, l ) ]2 .general, some l dependent corrections are expected.
However, the form of these corrections will depend on

Hence, for large l and h l close to ha , be#b and wethe range of the NLC-substrate interactions.
recover formula (25). Using equation (13) we can alsoWe have identi® ed w with the anchoring energy
express c in terms of be as followscoe� cient (see equation (18) ), which is related to the

extrapolation length via w =K (ha )/b. However, the
c(hl , l ) =vmin ( l ) +

g (hl , l )be (hl , l )

[l +be (hl , l ) ]2 +Dv(h l , l ) . (31)phenomenological model of the form given by equation (1)
is self-consistent only if the anchoring energy coe� cient
is positive. Since there is no reason to assume that b is Because of the relation between g (hÅ 0 , l ) and g (hl , l ) ,
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382 A. Poniewierski and A. Samborski

which follows from the de® nition of be , we ® nd that where Q0=Q (z =0 ) and Q l=Q (z = l ) . The surface con-
tribution to the free energy fs is expanded up to the
second order terms in Q0 , which for isotropic substratesc=vmin ( l ) +

g (h0 , l )

be (hl , l )
+Dv(hl , l ) , (32)

gives
where hÅ 0 and h l are treated as dependent variables. If fs (Q0 ) = c1kÃ ¯Q0 ¯kÃ + c2 TÇ r Q2

0+ c3 ( kÃ ¯Q0 ¯ kÃ )2

we neglect variations of vmin and hmin with l and assume
+ c4 kÃ ¯Q2

0 ¯ kÃ , (37)that be (hl , l ) # b then

where c1 , ¼ , c4 are constants. F is minimized subject to
c#vmin (2) +

g (hÅ 0 , 2)

2b
, (33) ® xed boundary conditions at z = l, speci® ed by hl , Q l ,

and the biaxiality P l . If l is large compared with the
i.e. c can be treated as a function of hÅ 0 alone. Although thickness of the interfacial region, one can use the
in some practical cases this may be a good approxi- approximation Q l# Qb , P l# Pb=0, where Qb and Pb
mation, in general it is justi® ed only if l � 2 and h l � ha . denote the bulk values. However, to solve numerically

As we have argued above, to study the phenomenon the set of Euler± Lagrange equations, we assume di� erent
of anchoring from the thermodynamic point of view it boundary conditions at z = l, i.e. QÇ ( l ) =PÇ ( l ) =0. We
is not really necessary to introduce a concept of the return to this point in the next section.
surface tension as a function of the surface director. In To reduce the number of parameters in the free energy
some sense, in our considerations it has been only an and to deal with dimensionless quantities, we perform
auxiliary quantity, introduced to show the correspond- the following scaling: Q . (B/4C )Q, z . [6 (L 1 C )1/2 /B ]z,
ence between the thermodynamic and the phenomeno- F . [ (L 1 C )1/2B3 /96C3]F , c1. [(L 1C )1/2B2 /24C2]c1 ,
logical approaches. The whole information about the and c i . [ (L 1 C )1/2B/6C]c i , i=2, 3, 4. Then Q is
system is contained in the function v (hl , l ) , which is expressed in a laboratory ® xed frame as follows:
uniquely de® ned. The asymptotic behaviour of v for
l � 2 simply re¯ ects the presence of elastic forces,
but it also provides information about the strength of Q =A Õ 1

3 q +p 0 v

0 Õ 1
3 q Õ p 0

v 0 2
3 q B . (38)

anchoring, expressed in terms of the extrapolation length.

3. The Landau ± de Gennes model
Hence, the dimensionless fG , fL , and fs are given byIn the Landau± de Gennes model, the NLC is

described in terms of the nematic order parameter Q ,
fG=

1

2
(M 1qÇ 2+M 2 pÇ 2+M 3 vÇ 2 ) , (39)which is a traceless, symmetric tensor. The director nÃ is

the eigenvector corresponding to the largest eigenvector
where M 1=2/3+ (4/9)L 2 /L 1 , M 2=2, M 3=2+L 2 /L 1 ,of Q , called the scalar order parameter Q . We neglect

¯ uctuations and assume that Q depends only on z, and fL=tq2 Õ 2q3+q4+3 ( t+6q+2q2 )p2+3 ( t Õ 3q+2q2 )v2

the free energy density is given by f = fL (Q )+ fG (QÇ ) ,
Õ 27pv2+9 ( p2+ v2 )2, (40)where QÇ =dQ/dz. The ® rst term describes a homo-

geneous system and the second term takes into account where t =24AC/B2 measures the temperature, and
spacial inhomogeneities. The following forms of fL and
fG are assumed: fs=Õ hq0+

1

2
(g1 q2

0+g2p
2
0+g3v

2
0 ) , (41)

fL (Q) =A Tr Q2 Õ B Tr Q3+C (Tr Q2 )2 (34)
where h=Õ (2/3 )c1 , g1=(4/9 ) ( 3c2+2c3+2c4 ), g2=4c2 ,

g3=2 ( 2c2+ c4 ) . For simplicity, we have used the same
fG (QÇ ) =

1

2
L 1 Tr QÇ 2+

1

2
L 2 kÃ ¯QÇ 2 ¯ kÃ . (35)

symbols (c i) in the dimensionless fs . The minimization
of F results in the following set of non-linear di� erentialThe parameter A is assumed to depend linearly on the
equations:temperature, whereas B, C and the elastic constants

M 1 qÈ =2tq Õ 6q2+4q3+3 ( 6 +4q )p2+3 (Õ 3 +4q )v2L 1 , L 2 are considered as temperature independent.
We consider a NLC sample of ® nite thickness l and (42)

assume the free energy functional in the following form
M 2pÈ =6 ( t +6q +2q2 )p Õ 27v2+36p ( p2+ v2 )[16, 27]:

(43)
F = P

l

0

dz{ fL[Q (z)] Õ fL (Q l ) + fG [QÇ (z) ]}+ fs (Q0 ) ,
M 3 vÈ =6 ( t Õ 3q +2q2 )v Õ 54pv+36v ( p2+ v2 )

(44)(36)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



383The thermodynamic approach to anchoring in N L C

with the boundary conditions at z =0:

M 1qÇ ( 0 ) =Õ h +g1q ( 0 ) (45)

M 2pÇ ( 0 ) =g2p ( 0 ) (46)

M 3 vÇ ( 0 ) =g3v ( 0 ). (47)

If at z = l the boundary conditions Q l=Qb and P l=0
are chosen then

q l=QbA 1 Õ
3

2
sin2 h lB (48)

p l=
1

2
Qb sin2 h l (49)

vl=
1

2
Qb sin 2hl . (50)

We focus our attention on the problem of the
homeotropic± conical anchoring transition. First, we seek
the limit of stability of the homeotropic anchoring. To
do this, we assume that q (z) , p (z) , and v (z) can be
expanded in h l around h l=0 up to the second order as

Figure 1. Temperatures of the homeotropic± conical transitionfollows
tHC (squares) and the FreÂ edericksz transition tF (circles) as

q (z) # q (0) (z) +q (2) (z)h2
l (51) functions of the sample thickness l; results obtained from

the birfurcation analysis.
p (z) #p (2) (z)h2

l (52)

v (z) # v(1) (z)h l (53)

Because of the elastic energy contribution, the nematicwith the boundary conditions at z=l: ql#Qb (1 Õ 3h2
l /2 ),

sample can remain homeotropic even though close topl#Qbh 2
l /2 , and vl#Qbh l . It can be shown that the

the substrate a tilted alignment is already favoured bycontribution to the equilibrium free energy up to
the NLC± substrate interaction. The instability occursthe second order in h l comes only from q (0) and v(1). The
when a non-zero solution of the linearized version ofuniaxial solution q (0) (z) satis® es
equation (44), which satis® es the boundary condition

M 1 qÈ (0)=2tq (0) Õ 6 [q (0)]2+4 [q (0)]3 (54)
v ( l ) =0, appears. In ® gure 1 we plot both tHC and the
temperature of the FreÂ edericksz transition tF as functionswith the boundary conditions: M 1qÇ (0) ( 0 )=Õ h+g1q (0) (0 ),
of l. We have chosen the following surface para-q (0) ( l ) =Qb , and v(1) satis® es the linearized equation
meters: h # Õ 0 5́27, g1# 1 7́92, g2=g3# 3 1́62, obtained

M 3 vÈ (1) =6{t Õ 3q (0)+2 [q (0)]2}v(1) (55)
from the surface parameters of ref. [17]: c1=Õ 0 5́,

with the boundary conditions: M 3 vÇ (1) ( 0 ) =g3 v(1) (0 ), c2
g

=0 8́5, c2m
= c2

n
=0 5́, for which the homeotropic±

v(1)( l ) =Qb . The expansion of the free energy in h l has conical transition is continuous. The two sets of sur-
the following simple form: face parameters are related to each other as follows:

h =Õ c1j0 , g1=2c2
g

j0 , g2=6c2m
j0 , g3=6c2

n
j0 , where

F #F (0)+
1

2
M 3 Qb vÇ (1) ( l )h2

l (56) j0=[2/3 + ( 4/9 )L 2 /L 1]1/2 and L 1=L 2 have been
assumed. For large l, tHC ( l ) tends to the limiting value
tHC (2 )#0 7́908, which di� ers only slightly from theand the loss of stability of the homeotropic anchoring

occurs when vÇ (1) ( l ) =0. We have solved equation (55) transition temperature found in ref. [17] for a particular
value of l, not given by the authors, however. The bulknumerically to ® nd the bifurcation temperature tHC as a

function of l (see ® gure 1). correlation length parallel to the director j
d
#0 5́1 at

t = tHC (2 ) . Larger deviations of tHC ( l ) from tHC (2 )It is also of interest to ® nd when the homeotropic
alignment becomes unstable if the boundary condition occur only when l <5. In ® gure 2 we have plotted tHC

against exp[Õ l/j
d
( tHC )] to show an asymptoticallyhl=0 is assumed. This instability can be classi® ed as a

FreÂ edericksz transition [1], although in this particular linear relation between them. When l � 2 the tem-
perature of the FreÂ edericksz transition tends to the samecase it is driven by changes of the temperature or the

sample thickness, and not by a bulk external ® eld. limit as tHC ( l ) , albeit much more slowly. We have found
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384 A. Poniewierski and A. Samborski

equations (45± 47), and at z = l we have assumed
QÇ ( l ) =PÇ ( l ) =0, h( l ) =h l , which for smaller values of l

is more realistic than the bulk boundary conditions:
Q ( l ) =Qb , P ( l ) =0. To transform the boundary con-
ditions at z= l to the laboratory ® xed frame, we use the
relation between q, p, v and Q , P, h:

q =
1

2
Q ( 3 cos2 h Õ 1 ) +

3

2
P sin2 h (57)

p =P +
1

2
(Q Õ P) sin2 h (58)

v=
1

2
(Q Õ P) sin 2h, (59)

and hence we ® nd the relation between qÇ , pÇ , vÇ and QÇ , PÇ , hÇ .
Eliminating hÇ ( l ) , Q ( l ) , and P ( l ) we obtain the three
boundary conditions at z = l:

Figure 2. Temperature of the homeotropic± conical transition qÇ ( l ) cos 2hl+
3

2
vÇ ( l ) sin 2hl=0 (60)

versus exp[Õ l/jd( tHC ) ]; jd denotes the bulk correlation
length in the direction parallel to nÃ .

pÇ ( l ) cos 2hl Õ
1

2
vÇ ( l ) sin 2hl=0 (61)

that for large l the asymptotic relation tF ( l ) ~1/l holds,
[q ( l ) Õ p ( l ) ] sin 2hl Õ 2v( l ) cos 2hl=0. (62)which is shown in ® gure 3.

In all cases, as an input for the relaxation method, we
4. Results have used constant pro® les: q (z) = (Qb /2) (3 cos2 h l Õ 1),

In the case of the conical anchoring, di� erential
p (z) = (Qb /2) sin2 h l , and v (z) = (Qb /2) sin 2hl . The con-

equations (42 ± 44) for the components of Q can only be vergence of the method is very good as the number of
solved numerically. To do this, we have used a relaxation iterations required to obtain the solution with an
method for solving two point boundary value problems acccuracy ~10 Õ 7 has been smaller than 20. We have
[28]. The boundary conditions at z =0 are given by been solving the Euler± Lagrange equations for various

values of t and l assuming the same surface parameters
as in ref. [17] and L 1=L 2 .

In ® gure 4 we plot the equilibrium free energy F (hl )
(for simplicity the dependence on l and t has been
suppressed), for l =50 and t =0 6́. This is well below
the FreÂ edericksz transition at tF (50)#0 6́8 obtained
from the bifurcation analysis. Since F (Õ hl )=F (hl ), only
the branch with h l > 0 is shown. The minimum of F (hl )
corresponds to the equilibrium tilt angle, and at h l=0
there is a local maximum in the form of a cusp. At
h l=0 there are three solutions of the Euler± Lagrange
equations: the uniaxial solution p (z) = v(z) =0, with the
free energy F*( 0 ) , and two solutions with a distorted
director ® eld, corresponding to the equilibrium free
energy F (0 ). The equilibrium solutions di� er only in the
sign of v (z) . The uniaxial solution belongs to the unstable
branch of the free energy (not shown in ® gure 4); hence
F*( 0 ) >F (0 ). Occasionally, our numerical procedure has
converged to a solution belonging to the metastable
branch of F , which is the analytic continuation of F (hl )
into the region of h l<0. For tF< t < tHC , the metastable

Figure 3. Temperature of the FreÂ edericksz transition versus 1/l. and unstable branches of F (hl ) disappear and the free
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385The thermodynamic approach to anchoring in N L C

energy of the uniaxial solution is equal to F (0 ). An the equilibrium value F ( 90 ß ), and the di� erence is much
larger than in the previous case. By analogy, we canexample of such a behaviour is shown in ® gure 5 for a

temperature slightly above tF . In ® gures 4 and 5 we expect that for a suitable choice of parameters a
FreÂ edericksz transition at h l=90 ß could be observed.have restricted the range of hl to 30 ß to show the shape

of F (hl ) in the vicinity of h l=0 in more detail; otherwise We have not studied this problem, however.
In ® gure 6 we plot h0=h(z =0) against h l for twoF (h l ) would appear very ¯ at for 0<hl<hmin . We note

that F*(hl=90 ß ) obtained from the solution of the temperatures: below and above tF . For t < tF , the
function h0 (hl ) is discontinuous at h l=0, which is anEuler± Lagrange equations with v (z) =0 also di� ers from
indication of a ® rst order transition between the states
h0 (0+) and h0 (0 Õ ). At t = tF the discontinuity disappears,
and for t > tF , h0 goes smoothly through zero. Here hl

plays a similar role to an external ® eld, and t = tF ,
h l=0 is the critical point in the ( t, h l ) plane.

We have also calculated the second derivative of F

with respect to h l using the cubic spline interpolation.
In ® gure 7 (a) to 7 (c) we plot amin ( l ) and a0 ( l ) , de® ned as
K (q2F/qh2

l ) Õ 1 at the minimum and at hl=0, respectively,
for t =0 6́, 0 7́85, 0 7́89, and 5 < l < 50. In all cases the
function amin ( l ) = l+bÅ ( l ) is linear with the unit slope, in
accord with equation (19), even for temperatures very
close to tHC . In the case of a0 we have also found a
linear dependence on l, but very close to tHC the slope
slightly deviates from unity. For t =0 6́ (see ® gure 7 (a) ),
a0 ( l ) =0 at l# 30. This corresponds to the FreÂ edericksz
transition, at which (q2F/qh2

l ) ( 0 ) diverges. We have
not shown a0 ( l ) on the other side of the FreÂ edericksz
transition, as the calculation of (q2F/qh2

l ) ( 0 ) with the
help of the spline interpolation is less reliable in this

Figure 4. Free energy as a function of h l for l=50; t=0 6́ is case because of the cusp (see ® gure 4).
below the FreÂ edericksz transition. The square corresponds To ® nd the behaviour of the anchoring energy in the
to the unstable uniaxial solution of the Euler± Lagrange
equations.

Figure 6. Orientation of the director at the substrate h0 versusFigure 5. Free energy as a function of h l for l=50; t=0 7́ is
slightly above the FreÂ edericksz transition. The uniaxial hl below ( t =0 6́ ) and above ( t=0 7́) the FreÂ edericksz

transition, for l=50.solution (square) belongs to the stable branch of F (hl ).
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386 A. Poniewierski and A. Samborski

vicinity of the homeotropic± conical anchoring transition,
we ® rst de® ne

u =
q2 F

qh2
l A 1 Õ

l

K

q2 F

qh2
l B Õ 1

, (63)

hence umin=u (hmin ) =wÅ (see equation (19)) and u0=u ( 0 ) .
Both umin and u0 as functions of t are plotted in ® gure 8,
for l =10. In the range of temperatures shown in ® gure 8
the dependence on t is approximately linear. At t = tHC

both umin and u0 are equal to zero, but u0 changes sign
at the transition, whereas umin > 0. The ratio of the
slopes of umin and u0 is approximately Õ 2.

The results presented above can be qualitatively
explained by means of the phenomenological model
considered in § 2. In the case of K1=K3=K we have

F (h0 , hl , l ) =
K

2l
(hl Õ h0 )2+w2h 2

0+w4h4
0 , (64)

where we have assumed a speci® c form of fs (h0 ) with
w4>0 and w2 changing sign at the homeotropic± conical
transition. The minimization of F with respect to h0 at
constant hl gives

A 2w2+
K

l Bh0+4w4h3
0=

K

l
h l . (65)

The global minimum of F occurs at h0=h l=ha , where
ha is the minimum of fs independently of l. Also in the
Landau± de Gennes model hmin is approximately con-
stant provided that l &j

d
. For h l=0, the FreÂ edericksz

Figure 7. K (q2 F/qh2
l ) Õ 1 as a function of l; amin = l+bÅ

(squares) and a0 (circles) correspond to hl =hmin and
h l=0, respectively: (a) t =0 6́, (b) t =0 7́85, (c) t=0 7́89.

Figure 8. u = (q2F/qh2
l )[1 Õ ( l/K ) (q2 F/qh2

l ) ] Õ 1 versus tem-
perature in the vicinity of the homeotropic± conical trans-
ition, for hl= hmin (squares) and h l=0 (circles); hmin =0
above tHC .
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387The thermodynamic approach to anchoring in N L C

transition occurs when 2w2+K /l=0. Then we calculate of the anchoring direction. The range of accessible
orientations of nÃ Å 0 depends on l and it reduces to thethe second derivative of the function F[h0 (hl , l ) , hl , l ]

with respect to hl at the minimum and h l=0, respectively. anchoring direction when l � 2. The anchoring strength
can be de® ned by means of the anchoring energyThis gives
coe� cient or the extrapolation length. The latter appears
most naturally in the asymptotic expansion of the excessq2F

qh2
l

(ha ) =G K ( l +K /2w2 ) Õ 1 if w2>0

K ( l Õ K /4w2 ) Õ 1 if w2<0
(66)

grand-canonical potential for l � 2, and we have argued
that it must be the same as the extrapolation length

and introduced by de Gennes [1] by means of the asymptotic
behaviour of the director ® eld. Since the surface excess
part of V is uniquely de® ned, the de® nition of theq2F

qh2
l

( 0 ) =G K ( l +K /2w2 ) Õ 1 if l+K /2w2<0

K (1 +3K/4w2 l) ( l +K /2w2 ) Õ 1

if l +K /2w2>0

, extrapolation length is also unique. This is in some
contrast with the approach used by Yokoyama [3], who
de® nes various surface quantities with respect to an
arbitrary dividing surface; thus, the surface tension and(67)
the anchoring strength are meaningful only in relation

which means that at the FreÂ edericksz transition to that surface. From the experimental point of view this
(q2F/qh2

l ) ( 0 ) diverges. Since at the FreÂ edericksz trans- approach turns out to be convenient. Indeed, in experi-
ition 1+3K/4w2 l=Õ 1/2 , (q2F/qh2

l ) ( 0 ) <0 above and ment one measures some response of the system, e.g. the
directly below the FreÂ edericksz transition, and it changes optical phase retardation, to the given stimulus. Then
sign at w2=Õ 3K/4l. Using the de® nition of u we ® nd the result of measurement is interpreted in terms of the
that theoretical response calculated for the ideal system, i.e.

for the NLC which is bulk-like between the dividing
surfaces. However, there always exists some ambiguityumin=G 2w2 if w2>0

Õ 4w2 if w2<0
(68)

in the location of the dividing surface, because of the
unknown interfacial structure. On the other hand, theand
problem of ambiguity of the extrapolation length does
not appear on the conceptual level, at least as long as

u0=G 2w2 if l+K /2w2<0

Õ (4w2+3K/l ) if l+K /2w2>0
, (69) the surface is ¯ at and smooth. Then the distance from

the solid substrate is a well de® ned thermodynamic
which explains the behaviour of u in the vicinity of the variable, and a thermodynamically consistent de® nition
homeotropic± conical transition shown in ® gure 8. It of the extrapolation length should refer to the physical
follows from equations (66) and (67) that the slopes of surface of the substrate.
amin and a0 are the same in the limit of l � 2. In our studies we have considered explicitly only a
Equation (67) also predicts that above the FreÂ edericksz single NLC± substrate interface. The surface z = l, where
transition a0 is a linear function of l with unit slope. The the orientation of the director can be controlled, has a
di� erence between the two slopes shown in ® gure 7 (c) is sense of a mathematical surface which does not modify
too small to draw any de® nite conclusions. However, it the NLC structure. If there is another substrate at z = l

suggests that for l above the FreÂ edericksz transition the we can easily extend our analysis by introducing a
dependence of a0 on l may di� er from that predicted by mathematical surface at z = l/2 . The total v is a sum of
equation (67). This point requires further investigation. the two contributions from both interfaces and in the

Finally, we ® nd that at the FreÂ edericksz transition: equilibrium it has to be minimal. We ® nd that for large
l it is given by the asymptotic expression

F =K
h2

l

2l
Õ 3w Õ 1/3

4 A Khl

4l B4/3

, (70)

v =
1

2 [l+b (1)+b (2)]G P h(2)a

h(1)a

[K (h)]1/2dh H2

, (71)
which is non-analytic at h l=0.

5. Discussion where h (1)
a , b (1) and h (2)

a , b (2) correspond to z=0 and
z = l, respectively. qv/ql is related to the disjoiningWe have studied the polar anchoring in the NCL±

amorphous substrate system and proposed thermo- pressure, which has been measured in the case of simple
¯ uids [29].dynamic de® nitions of the surface director, the surface

tension and the anchoring strength. It follows from these We have applied the general formalism to study the
Landau± de Gennes model of the NLC± substrate inter-de® nitions that c as a function of the surface director

nÃ Å 0 can be de® ned only locally in some neighbourhood face. Even very close to a continuous homeotropic±
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